

Overview - Force Sensor Kit

(Preliminary)

Force sensor kit

The force sensor kit enables you to capture compressive loading of machines and structures.

- The sensing element of the kit is made entirely from a high quality elastomer making it:
 - Inherently tolerant to shock, vibration, and very high overloads,
 Compatible with non-uniform surfaces and off-axis loading,
 - Low profile enabling easy installation in compact systems.

Contents

The force sensor kit includes:

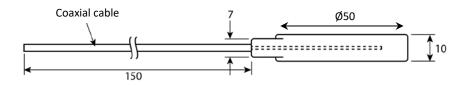
- One force sensor (see datasheet below),
- One wireless electronic measurement circuit (see datasheet below),
- Charging wires,
- USB drive containing graphical user interface software.

Graphical user interface

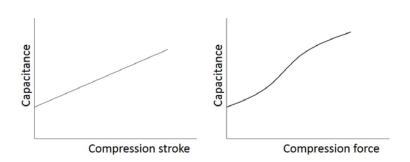
www.leaptechnnology.com contact@leaptechnology.com LEAP Technology ApS • Diplomvej 381 • 2800 Kgs. Lyngby • Denmark

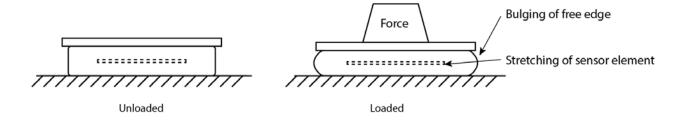
Datasheet – Force Sensor

(Preliminary)

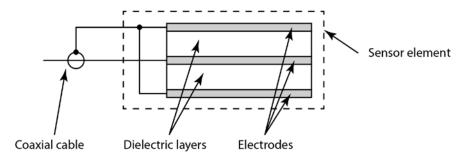

Elastomer force sensor (004D0011)

An all-rubber load cell made from high quality elastomer materials.

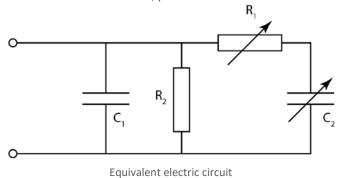

- Highly accurate due to its capacitive characteristics;
- Inherently tolerant to shock, vibration, overload, and misalignment;
- Flat profile enabling easy installation;
- Shaped to be hygienic and easy to clean;
- Highly compatible with other components e.g. mounts, absorbers, and similar.


Dimensions (mm)

Working principle


The 50mm diameter surfaces on the top and bottom of the sensor are the load bearing surfaces. Applying a force between these two surfaces causes the "free" edge of the sensor to bulge, stretching the sensor element within.

Internal construction


The sensor element is constructed with three electrodes, the outer two of which are connected to the screen of the coaxial cable. This is to allow electronics to measure the capacitance in such a way that minimises capacitive coupling to other objects and to screen against noise. The sensor element is then overcoated in a high quality elastomer in order to convert applied force to a measurable stretch.

Specifications

Parameter	Value	unit
Maximum measurement load	100	Kg
Maximum overload*	1000	%
Capacitance at rest* (C _{2min} + C ₁)	500	pF
Capacitance at full Load* (C _{2max} + C ₁)	650	pF
Series resistance – fluctuating (R ₁)	10 to 100	kΩ
Parallel resistance (R ₂)	<1	GΩ
Operating temperature range	-20 to 80	°C
Weight*	25	grams

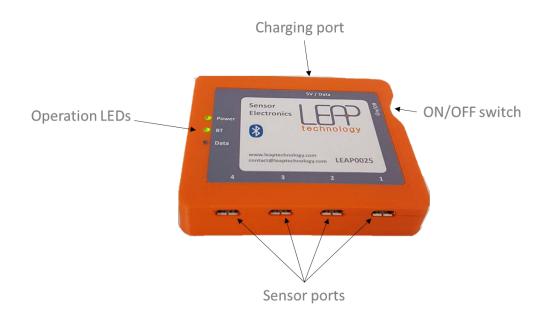
^{*}Indicative figures. All specifications can be customised, please contact us for other versions.

Equivalent electric circt

Measuring the capacitance

It is recommended to use a constant current charging circuit to measure the capacitance in such a way that makes the measurement insensitive to the fluctuating value of R_1 . LEAP Technology supply such electronics for measuring the capacitance and converting it into the units of choice. Please contact us to learn more.

www.leaptechnnology.com contact@leaptechnology.com LEAP Technology ApS • Diplomvej 381 • 2800 Kgs. Lyngby • Denmark


Datasheet – Wireless Sensor Electronics

(V1.0)

Wireless sensor electronics

This easy to use electronics box is designed for capacitive sensor measurements. The included circuit and software is capable of measuring capacitors with variable capacitance as well as variable equivalent serial resistance (ESR), thus making it ideal for electroactive polymer (EAP) sensor measurements. Due to its universal measurement technique, this device can measure EAP sensors of LEAP Technology as well as those from third parties. The circuit is supplied with proprietary PC software that enables you to measure, save, and display real-time data. An API is available upon request. The board can measure up to four sensors and is equipped with Bluetooth and cable connections for transferring data.

Inputs and outputs

Technical specifications

Item	Value	Description
Power supply	5V	
EAP sensor ports	Up to 4	Software selectable. Can be upgraded to 8 sensor ports.
Communication platform	Bluetooth and USB	Software selectable
Measurement range	0.1 – 10nF	Software selectable
Excitation frequency	100 – 800Hz	Software selectable
Digital update rate	0.1 – 800Hz	Software selectable
Averaging number	n = 1 – 100	Software selectable
Resolution	1pF	
Maximum Series resistance	100 kOhm	
Operation temperature	10 – 60°C	